首页> 外文OA文献 >Sparse approximation property and stable recovery of sparse signals from noisy measurements
【2h】

Sparse approximation property and stable recovery of sparse signals from noisy measurements

机译:稀疏逼近特性与稀疏信号的稳定恢复   嘈杂的测量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we introduce a sparse approximation property of order $s$ fora measurement matrix ${\bf A}$: $$\|{\bf x}_s\|_2\le D \|{\bf A}{\bf x}\|_2+\beta \frac{\sigma_s({\bf x})}{\sqrt{s}} \quad {\rm for\ all} \ {\bf x},$$where ${\bf x}_s$ is the best $s$-sparse approximation of the vector ${\bf x}$in $\ell^2$, $\sigma_s({\bf x})$ is the $s$-sparse approximation error of thevector ${\bf x}$ in $\ell^1$, and $D$ and $\beta$ are positive constants. Thesparse approximation property for a measurement matrix can be thought of as aweaker version of its restricted isometry property and a stronger version ofits null space property. In this paper, we show that the sparse approximationproperty is an appropriate condition on a measurement matrix to consider stablerecovery of any compressible signal from its noisy measurements. In particular,we show that any compressible signalcan be stably recovered from its noisymeasurements via solving an $\ell^1$-minimization problem if the measurementmatrix has the sparse approximation property with $\beta\in (0,1)$, andconversely the measurement matrix has the sparse approximation property with$\beta\in (0,\infty)$ if any compressible signal can be stably recovered fromits noisy measurements via solving an $\ell^1$-minimization problem.
机译:在本文中,我们介绍了测量矩阵$ {\ bf A} $的阶次$ s $的稀疏近似性质:$$ \ | {\ bf x} _s \ | _2 \ le D \ | {\ bf A} { \ bf x} \ | _2 + \ beta \ frac {\ sigma_s({\ bf x})} {\ sqrt {s}} \ quad {\ rm for \ all} \ {\ bf x},$$其中$ { \ bf x} _s $是$ \ ell ^ 2 $中向量$ {\ bf x} $的最佳$ s $-稀疏近似,$ \ sigma_s({\ bf x})$是$ s $-向量$ {\ bf x} $在$ \ ell ^ 1 $中的稀疏近似误差,而$ D $和$ \ beta $是正常数。可以将测量矩阵的稀疏近似属性视为其受限等距属性的更弱版本和其零空间属性的更强版本。在本文中,我们表明稀疏近似属性是在测量矩阵上考虑从噪声测量中稳定恢复任何可压缩信号的适当条件。特别地,我们表明,如果测量矩阵具有$ \ beta \ in(0,1)$的稀疏近似特性,则通过解决$ \ ell ^ 1 $ -minimization问题,可以从噪声测量中稳定地恢复任何可压缩信号。如果可以通过解决$ \ ell ^ 1 $最小化问题从噪声测量中稳定地恢复任何可压缩信号,则测量矩阵具有$ \ beta \ in(0,\ infty)$的稀疏近似特性。

著录项

  • 作者

    Sun, Qiyu;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号